
CUDA C++ BASICS
NVIDIA Corporation

2

WHAT IS CUDA?

CUDA Architecture

Expose GPU parallelism for general-purpose computing

Expose/Enable performance

CUDA C++

Based on industry-standard C++

Set of extensions to enable heterogeneous programming

Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C++

Other languages/bindings available: Fortran, Python, Matlab, etc.

3

INTRODUCTION TO CUDA C++

What will you learn in this session?

Start with vector addition

Write and launch CUDA C++ kernels

Manage GPU memory

(Manage communication and synchronization)-> next session

(Some knowledge of C or C++ programming is assumed.)

4

HETEROGENEOUS COMPUTING

Host The CPU and its memory (host memory)

Device The GPU and its memory (device memory)

5

PORTING TO CUDA

Application Code

+

GPU CPUUse GPU to Parallelize
Compute-Intensive Functions

Rest of Sequential
CPU Code

6

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

PCIe or NVLink Bus

7

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe or NVLink Bus

8

SIMPLE PROCESSING FLOW

PCIe or NVLink Bus

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

9

PARALLEL PROGRAMMING IN CUDA C++

GPU computing is about massive parallelism!

We need an interesting example…

We’ll start with vector addition

a b c

10

GPU KERNELS: DEVICE CODE

__global__ void mykernel(void) {

}

CUDA C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code (can also be called from other device code)

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler:

gcc, cl.exe

11

GPU KERNELS: DEVICE CODE

mykernel<<<1,1>>>();

Triple angle brackets mark a call to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

The parameters inside the triple angle brackets are the CUDA kernel execution configuration

That’s all that is required to execute a function on the GPU!

12

MEMORY MANAGEMENT
Host and device memory are separate entities

Device pointers point to GPU memory

Typically passed to device code

Typically not dereferenced in host code

Host pointers point to CPU memory

Typically not passed to device code

Typically not dereferenced in device code

(Special cases: Pinned pointers, ATS, managed memory)

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(), memcpy()

13

RUNNING CODE IN PARALLEL

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

14

VECTOR ADDITION ON THE DEVICE

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of all blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a different index

Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0..N-1, where N is from the kernel execution
configuration indicated at the kernel launch

15

VECTOR ADDITION ON THE DEVICE

#define N 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

16

VECTOR ADDITION ON THE DEVICE

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

17

REVIEW (1 OF 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host (or possibly from other device code)

Passing parameters from host code to a device function

18

REVIEW (2 OF 2)

Basic device memory management

cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index

19

CUDA THREADS

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main():

add<<< 1, N >>>();

__global__ void add(int *a, int *b, int *c) {
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

20

COMBINING BLOCKS AND THREADS

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

21

INDEXING ARRAYS WITH BLOCKS AND THREADS

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block):

With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

22

INDEXING ARRAYS: EXAMPLE

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

23

VECTOR ADDITION WITH BLOCKS AND THREADS

Use the built-in variable blockDim.x for threads per block

Combined version of add() to use parallel threads and parallel blocks:

What changes need to be made in main()?

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

int index = threadIdx.x + blockIdx.x * blockDim.x;

24

ADDITION WITH BLOCKS AND THREADS

#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

25

ADDITION WITH BLOCKS AND THREADS
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

26

HANDLING ARBITRARY VECTOR SIZES

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)

c[index] = a[index] + b[index];
}

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Update the kernel launch:

27

WHY BOTHER WITH THREADS?

Threads seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:

Communicate

Synchronize

To look closer, we need a new example… (next session)

28

REVIEW

Launching parallel kernels

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Assign elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

29

FUTURE SESSIONS

CUDA Shared Memory

CUDA GPU architecture and basic optimizations

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups

30

FURTHER STUDY

An introduction to CUDA:

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

31

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

QUESTIONS?

